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Synchronization regimes in coupled noisy excitable systems
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We study synchronization regimes in a system of two coupled noisy excitable systems which exhibit
excitability close to an Andronov bifurcation. The uncoupled system possesses three fixed points: a node, a
saddle, and an unstable focus. We demonstrate that with an increase of coupling strength the system undergoes
transitions from a desynchronous state to atrain synchronizationregime to a phase synchronization regime,
and then to a complete synchronization regime. Train synchronization is a consequence of the existence of a
saddle in the phase space. The mechanism of transitions in coupled noisy excitable systems is different from
that in coupled phase-coherent chaotic systems.
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I. INTRODUCTION

The study of coupled oscillators is one of the fundamen
problems with applications in various fields@1#. Mutual syn-
chronization is of great interest and importance among
collective dynamics of the coupled oscillators. The notat
of synchronization has been extended to include a variet
phenomena in the context of interacting chaotic oscillato
such as complete synchronization@2#, generalized synchro
nization@3#, phase synchronization@4#, and lag synchroniza
tion @5#. Transitions from phase to lag to complete synch
nization have been demonstrated in a system of two cou
nonidentical Ro¨ssler chaotic systems@5# which are phase co
herent.

Synchronization has also been studied in noise-indu
motions. It was found that the stochastic processes
coupled stochastic bistable systems become coherent w
the coupling strength exceeds some critical value@6#. The
mean switching frequency in stochastic bistable systems
be locked by an external period force@7#. Stochastic reso-
nance can be understood from the view point of enhan
frequency locking and phase synchronization of the no
induced motion to the external signal@8#. Due to this syn-
chronization, coupled stochastic bistable elements can
play global synchronization to an external periodic sign
which has the effect of enhancing the stochastic resonanc
the array@9#. Pure noise can induce coherence resonanc
some excitable systems@10–12#. Phase synchronization ha
been demonstrated in systems of two coupled cohere
resonance oscillators@13#. Global synchronization@14,15#
and array-enhanced coherence resonance@15# have been ob-
served in extended excitable media. Recently, synchron
tion of noisy oscillatory models found an interesting app
cation in the oscillatory zoning of minerals@16#.

However, whether different synchronization regim
similar to those in coupled phase-coherent chaotic syst
also exist in coupled stochastic systems are not clear. H
we study this problem in a system of two coupled no
excitable systems close in parameter space to an Andro
homoclinic bifurcation@17#. This bifurcation is a quite gen
eral mechanism for excitability observed in many laser@18#
and biological@11# systems. Typically, three equilibria—
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stable node (N), a saddle (S), and an unstable focu
(F)—coexist in the uncoupled system. The unstable ma
fold of the saddle approaches the node, and the sadd
connected to the focus by its stable manifold~Fig. 1, region
II !. In the presence of noise, the fixed state at the node
be kicked over the separatrix of the stable manifold, and
system will only come back to the node after a large exc
sion following the guidance of the unstable manifold, d
playing a spike in the neuronal systems or a dropout ev
~low-frequency fluctuation! in laser systems@18#.

We demonstrate that, with an increase of the coupl
strength, one generally observes phase synchronization
complete synchronization regimes. In the system, transi
between different regimes is blurred due to the stocha
nature of the dynamics. A synchronization regime,train syn-
chronization, is found prior to the phase synchronization r
gion, in which the two systems exhibit phase synchronizat
of spike trains, while the number of pulses in the spike tra
may be different for the two coupled noisy oscillators. Th
behavior occurs when the trajectories cross the stable m
fold of the saddle before coming back to the node, and
thus universal in excitable systems close to the Andron
bifurcation. The mechanism of the transitions in this type

FIG. 1. Bifurcation diagram and phase portraits. In regions I
and III, a node, a saddle and an unstable focus coexist. In region
the node and the saddle disappear via a saddle-node bifurcatio
regions I and III, there are two stable attractors, the node and a
cycle. The limit cycle disappears via the Andronov homoclinic
furcation ~dashed lines!, and the node becomes the global attrac
in region II where the system behaves as an excitable one. Clo
the homoclinic bifurcation point, the stable and unstable manifo
~solid line and dotted line in the phase portraits! of the saddle are
close to each other.
©2001 The American Physical Society01-1
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system is different from that in coupled phase-coherent c
otic systems.

II. SYSTEM AND RESULTS

It is a typical strategy in nonlinear dynamics to stu
paradigmatic models whose solutions possess desired
tures. We study synchronization phenomena in a sim
model with the above desired phase space structure. It r

ẋ15y11g~x22x1!1Asj1 , ~1!

ẏ15x12y11x1y12x1
31bx1

21a1 , ~2!

ẋ25y21g~x12x2!1Asj2 , ~3!

ẏ25x22y21x2y22x2
31bx2

21a2 . ~4!

This simple mathematical model, although not derived fr
a specific physical process, gives a good account of the
terspike time distributions of low-frequency fluctuations in
laser system@19#, which suggests that the underlying mech
nism of the low-frequency fluctuation are excitability an
noise.

In our investigation, the two oscillators are assumed to
nonidentical, e.g.,a15” a2. Similar behaviors, however, ar
observed for identical systems. The noisesj1 and j2 are
independent Gaussian white ones with a variance 1.0.

Figure 1 depicts the phase diagram in a parameter s
(b,a) for the uncoupled element. In the following, we ta
a150.25, a250.23, b50.4, ands50.01, in the excitable
region II, and study the synchronization behavior with
increase of coupling strengthg. b50.4 is close to the ho-
moclinic bifurcation between regions I and II.

In the coupled excitable systems, noise-induced spike
one system may excite another system due to coupl
Wheng is rather small, this coupling-induced excitation m
not always occur, and the systems are in desynchroniza
regime. As g increases to large enough values, a noi
induced spike can almost always excite the other syst
This excitation may produce a train of spikes in the syste
before they come back to the quiescent states at the node
typical behavior is shown in Fig. 2, where the two syste

FIG. 2. An example of train synchronization forg50.16. ~a!
and~b! are spikes of the two systems, and~c! is the synchronization
error dx5ux12x2u. ~d! is the phase difference between the spik
02620
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display synchronization in a ‘‘train’’ fashion, while the num
bers of spikes within the synchronized spike trains can
different for the two subsystems, as seen by the phase
~defined below! in Fig. 2~d!. The spiking frequencies ar
different in the two subsystems, and the synchronization
rors are rather large during the spiking period of the syste
With a further increase ofg, the two subsystems come int
the phase synchronization regime where the spike frequ
cies become identical; however, the errors between ph
synchronized spikes of the two subsystems are still relativ
large, as seen in Fig. 3, because there are appreciable p
differences between the spikes, although there are no p
slips (udfu,2p). Finally, for large enoughg, the phase dif-
ferences between the two subsystems become rather s
and the differenceux12x2u reaches the noise level, achievin
complete synchronization, as illustrated in Fig. 4. One a
notes that the average number of pulses in the spike tr
decreases with increasing coupling strength.

To characterize synchronization transitions andtrain syn-
chronizationin the system, we first define a train of spike
by threshold testing: lettk be the time at which the system
produces thekth spike determined in numerical simulation
when the variablex crosses overxF from below.xF is thex
value of the unstable focusF. Two successive spikes ar
considered to be in the same train if the spike intervaltk11
2tk,Tth . Tth is a prescribed value for the threshold testin
The typical behavior of this system is not sensitive to t
value. In this way, we can determine the firing momentt i

c of

.

FIG. 3. An example of phase synchronization forg50.34. The
caption is the same as in Fig. 2.

FIG. 4. An example of complete synchronization forg50.70.
The caption is the same as in Fig. 2.
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the i th spike train. Moreover, we can transfer the spike trai
into a binary streamxc(t). Now we can compute the phase
the spikes and spike trains as

f~ t !52pk1
t2tk

tk112tk
, fc~ t !52p i 1

t2t i
c

t i 11
c 2t i

c
. ~5!

For the example in Fig. 2, the spikes are sorted into sp
trains by the above threshold testing withTth520, as indi-
cated by the dotted lines in Figs. 5~a! and 5~b!. Figure 5~c!
depicts the phase differencesdf5f12f2 between the
spikes anddfc5f1

c2f2
c between the spike trains. It i

clearly seen that phase slips occur between the spikes o
two subsystems, while the spike trains are in the phase
chronization state. Thus we call the behaviortrain synchro-
nization.

To quantify the phase slips of the spikes and spike tra
we calculate the phase diffusion constants

D5 lim
t→`

1

2t
Š~df2^df&!2

‹, Dc5 lim
t→`

1

2t
Š~dfc2^dfc&!2

‹.

~6!

For further characterization of the synchronization behav
we compute the normalized synchronization errorSbetween
x1 and x2, and Sc betweenx1

c and x2
c ~with mean values

being dropped! @5#,

S5
^~x12x2!2& t

@^x1
2& t^x2

2& t#
1/2

, Sc5
^~x1

c2x2
c!2& t

@^~x1
c!2& t^~x2

c!2& t#
1/2

, ~7!

where ^ & t denotes an average over time. We also comp
the relative maximal synchronization error

R5
^max~ ux12x2u!&

@^max~x1!&^max~x2!&#1/2
, ~8!

where max(•) is the maximum of a variable in a period o
long enough time, and̂•& denotes an ensemble averageR
measures the ratio of the maximal synchronization erro
the maximal value of the spikes in the subsystems.

These quantities as functions ofg with the above system
parameters andTth520 are shown in Fig. 6. Figure 6~a!

FIG. 5. An example of train synchronization forg50.16 and
Tth520. ~a! and ~b! are spikes (x, solid line! and spike trains (xc,
dotted line! of the two systems.~c! Phase differences of the spike
~solid line! and the spike train~dotted line!.
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shows the frequencies of the spikes~upper plots! and spike
trains~lower plots! of the two systems. In a large range ofg,
the spike frequencies are higher than those of the uncou
systems due to the mutual excitations. The frequency dif
ences are shown in Fig. 6~b!, and the phase diffusion con
stants in Fig. 6~c!. It is seen that, proceeding to the transitio
to the phase synchronization regime at aboutg50.3, there
exists a transition to train synchronization at aboutg50.1. In
the train synchronization regime 0.1,g,0.3, the frequency
difference of the spike train is very close to zero, while th
of the spikes is not;Dc is very close to zero, butD is not;
and Sc is quite small, whileS and R are relatively large.
After the transition to the phase synchronization regime,
two systems keep in step to produce spikes, but there
appreciable phase differences between the spikes. As a
sult, the relative maximal synchronization errorR is still
quite large although the normalized synchronization erroS
is rather small because large synchronization errors only
cur sparsely during the spiking period@Fig. 3~c!#. A further
increase ofg will reduce the phase differences, and the s
tem moves into complete synchronization regime~about g
.0.6) where the synchronization errors mainly result fro
the independent noises in the two subsystems. Since the
tems are in a noisy environment, the transitions between
ferent synchronization regimes are not sharp. The beha
of the spike train described in the above is not sensitive
the choice of the thresholdTth as long as it is large enough
as shown by the insets in Figs. 6~a! and 6~d!, illustrating the
saturation property of the frequencies and the synchron

FIG. 6. Illustration of synchronization regimes.~a! Frequencies
of the spikes~upper plots! and the spike trains~lower plots! in the
two subsystems.~b! Frequency differences and~c! phase diffusion
constants of the spikes and the spike trains~dotted lines!. ~d! Syn-
chronization errorSof the spikes~solid line!, synchronization error
Sc of the spike trains~dotted line!, and relative maximal synchro
nization errorR of the spikes~dashed line!. The insets in~a! and~d!
are the frequency and the synchronization errorSc of the spike
trains as a function ofTth at g50.16, respectively.
1-3
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tion errorSc of the spike trains as functions ofTth .
We also note that the spike frequency in the compl

synchronization region approaches a value smaller than
values in uncoupled subsystems. Taking into account
small differences between (x1 ,y1) and (x2 ,y2), and denot-
ing (X,Y)5@(x11x2)/2,(y11y2)/2# and A5(a11a2)/2,
from Eqs.~1!–~4! one obtains the approximation for the a
erage dynamics (X,Y):

Ẋ5Y1As/2j, ~9!

Ẏ5X2Y1XY2X31bX21A. ~10!

In this approximation, high orders of the differences (xi
2X,yi2Y)( i 51,2) are ignored. The summation of the tw
independent noiseAs@(j11j2)/2# results in another noise
As/2j which has half of the variances. Now it is seen that
the two synchronized subsystems act as a single elemen
are subjected to a weaker noise, so that they have a sm
spiking frequency. A similar behavior was observed in oth
excitable systems@15#. This property in the complete syn
chronization region is different from coupled chaotic sy
tems, where the dynamics of the two synchronized syst
is restricted to the chaotic attractor in the subspace o
single uncoupled system.

The mechanism of the behavior of train synchronizat
lies in the crossing of the noisy trajectories over the sta
manifold of the saddle before reaching the node. Wheng is
large enough, a noise-induced spike in one system exc
the other, but the latter has a pronounced phase lag@Fig.
7~a!#. Close to the Andronov bifurcation, the stable and u
stable manifolds are close to each other, a property unive
in this type of system. The lagged system is very likely to
drawn across the stable manifold, resulting in an ea
triggered spike before reaching the node@Fig. 7~b!#. More-
over, both systems may cross the stable manifold for sev
times, producing a train of early-triggered spikes. Due to

FIG. 7. Mechanism of train synchronization.g50.16. ~a! Seg-
ments of the time series of the two systems, illustrating phase
of the spikes.~b! Phase space illustration of early-triggered spik
The initially lagged noisy trajectory~cycles! is drawn across the
stable manifold~solid line!, and cycles the unstable focusF before
coming back to the nodeN along the unstable manifold~dotted
line!.
02620
e
he
e

but
ller
r

-
s
a

n
le

es

-
al

e
-

ral
e

presence of a saddle point, the flow closer to the saddl
slower. After a few spikes following larger~slower! or
smaller ~quicker! loops cycling the focusF, the two sub-
systems adjust their phase difference to a small enough v
@mod 2p# so that both of them can follow the guidance
the unstable manifold to the node, completing a synch
nized train of spikes. During the adjustment of the pha
difference, one subsystem may cycle the focus a few m
loops than the other, resulting in phase slips of the spi
shown in Fig. 5~c!. Since phase lags fluctuate and the nois
may help or resist the early crossing over the stable m
fold, the number of spikes in the spike trains fluctuates. T
average number of spikes in one train decreases with incr
ing g, because the average initial phase lags decrease wi
increase ofg. This smaller initial phase lags make the sy
tems more likely to follow the guidance of the unstab
manifold, and come back to the node together without ea
return; this can be seen from Figs. 2–4. Also, small enou
initial phase lags make the two subsystems follow each o
closely enough to produce the same number of spikes in
train, and the system moves into the phase synchroniza
regime. In the complete synchronization regime, a train
spikes occurs when noise kicks one system across the s
manifold at some point before reaching the node, and
other follows immediately almost without phase lag. Due
the weaker level of the effective noise in Eqs.~9!–~10!, an
early-triggered spike rarely occurs.

Similar synchronization transitions and train synchroniz
tion have been observed for other parameters in the excit
region II. Generally, the distance between the stable and
stable manifolds increases as the system parameters m
away from the Andronov bifurcation, and a single spi
without early return prevails over spike trains with more th
one spike.

Synchronization transitions in coupled excitable syst
differ in mechanism from those in coupled periodic or pha
coherent chaotic oscillators@5#. In the latter systems, phas
synchronization can be described in the weak-coupling li
by a phase modeldḟ5dv12g sin(df)1dF, wheredv, the
difference of the natural frequencies, anddF, the effect of
the amplitude difference, both vanish when the systems
proach identity, and the critical value ofg for the phase
synchronization approaches zero~Arnold tongue! @4#. Lag
synchronizations where the states of two oscillators
nearly identical but one system lags in time behind the oth
exists between phase synchronization and complete sync
nization regimes in some chaotic systems with coher
phases and well-defined frequencies@5#. For coupled excit-
able systems, phase synchronization can occur only afte
coupling is strong enough to induce mutual excitation due
the threshold property of the excitable system, even tho
the two subsystems are identical. For this reason, the typ
behavior does not depend on whether the systems are i
tical or nonidentical. Due to the noisy environment, t
phase lags between the spikes of the two subsystems flu
ate, and one subsystem can advance or lag behind the
for different spikes. There does not exist a well-defined ti
lag between the systems, and thus there is not a pronou

gs
.
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lag synchronization regime. Also, transitions between diff
ent regimes are blurred due to the stochastic nature of
system.

III. DISCUSSION

In summary, we have demonstrated a series of synchr
zation transitions in a system of two coupled noisy excita
systems displaying excitability close to the Andronov h
moclinic bifurcation. Synchronization in coupled excitab
systems only occurs when the coupling is large enough
induce mutual excitation. The initial phase lag between
excited and exciting spikes plays a crucial role in the sys
behavior. With the phase lags decreasing for larger coup
strengths, the system undergoes transitions from weake
stronger synchronization regimes. Based on this underst
ing of synchronization behavior in excitable systems, tran
tions from desynchronization to phase synchronization
then to complete synchronization can be generally obse
in systems of two coupled excitable elements, while tr
synchronization can be observed in systems close to the
dronov homoclinic bifurcation where stable and unsta
manifolds of the saddle are close. The mechanism of s
chronization in this type of system is different from that
coupled phase-coherent chaotic systems.

The existence of a saddle in the system has interes
effects on its behavior. Prior to the Andronov bifurcation, t
saddle has the effect of dephasing in two coupled neur
with periodic oscillation@20#. Just after bifurcation, trains o
spikes resulting from a noise-induced crossing over a st
manifold before reaching the node account for the cluster
dropout events observed in laser systems@19#, and the ‘‘rigid
excitation’’ in the Hodgkin-Huxley neuron in the presence
noise @11#. Here in coupled systems, trains of spikes a
occur when coupling induces a similar early crossing o
the stable manifold. We should also point out that train s
chronization can also be observed in regions outside the
citable region II if the system is close to the border of h
moclinic bifurcation and isin the presence of noise. This
could be understood by the fact that the noise smears ou
sharp transitions.

In excitable systems, there are separated time scales.
is determined by noise-induced escape from the well over
barrier of the potential, such asU(x)5x4/42bx3/32x2/2
2ax, defined in a neighborhood of the nodeN @19# in the
system of equations~1!–~4!, and the other is determined b
ce

I.

ev

ev
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the intrinsic dynamics of the guidance of the unstable ma
fold. For weak noise, the time scale for the escape from
quiescent state is long, while it is much shorter for the pu
itself. Some other mechanism can produce a similar sep
tion of times scales. For example, in a chaotic burst
model @21# of thermally sensitive neurons, there are slo
subthreshold oscillations with time scales much longer th
those of the spike generation. The system can produce s
trains with chaotic pulse intervals in some temperature
gion. When two nonidentical chaotic neurons in such a
gime are coupled, a similar transition from train synchro
zation to full synchronization is observed. In this model, in
certain temperature region, there is a saddle embedded in
chaotic attractor, and a homoclinic bifurcation has been id
tified @22# implicitly by the sudden explosion of the spik
interval. Train synchronization is also observed in the vic
ity of this bifurcation point. However, in this four
dimensional system, we have no knowledge of the organ
tion of the stable and unstable manifolds, which could
very complicated@23#. Furthermore, the system trajecto
visits the close neighborhood of the saddle rarely and in
intermittent way, which is different from excitable system
where the trajectory always comes back to a stable n
close to the saddle after a spike train. Thus we cannot sim
ascribe the train synchronization in this system to the clo
ness of the stable and unstable manifolds of the saddle. In
future, it would be worthwhile to investigate synchronizatio
under more general considerations of separated time scal
the systems.

The mechanisms for the generation of pulse trains in c
otic and excitable models of neurons are different. Sim
properties of the synchronization transition and train s
chronization in these classes of systems may be of imp
tance for neurophysiology, e.g., in biological informatio
processing. The impact of train synchronization on the
havior of networks of coupled excitable or chaotic neuro
will be an interesting topic for future investigation.
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