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Synchronization regimes in coupled noisy excitable systems
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We study synchronization regimes in a system of two coupled noisy excitable systems which exhibit
excitability close to an Andronov bifurcation. The uncoupled system possesses three fixed points: a node, a
saddle, and an unstable focus. We demonstrate that with an increase of coupling strength the system undergoes
transitions from a desynchronous state ttran synchronizatiorregime to a phase synchronization regime,
and then to a complete synchronization regime. Train synchronization is a consequence of the existence of a
saddle in the phase space. The mechanism of transitions in coupled noisy excitable systems is different from
that in coupled phase-coherent chaotic systems.
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[. INTRODUCTION stable node N), a saddle §), and an unstable focus
(F)—coexist in the uncoupled system. The unstable mani-

The study of coupled oscillators is one of the fundamentafold of the saddle approaches the node, and the saddle is
problems with applications in various fielfls]. Mutual syn-  connected to the focus by its stable maniféiig. 1, region
chronization is of great interest and importance among thdl). In the presence of noise, the fixed state at the node may
collective dynamics of the coupled oscillators. The notationbe kicked over the separatrix of the stable manifold, and the
of synchronization has been extended to include a variety ofystem will only come back to the node after a large excur-
phenomena in the context of interacting chaotic oscillatorsgion following the guidance of the unstable manifold, dis-
such as complete synchronizatif®], generalized synchro- playing a spike in the neuronal systems or a dropout event
nization[3], phase synchronizatidd], and lag synchroniza- (jow-frequency fluctuationin laser system§18].
tion [5]. Transitions from phase to lag to complete synchro- \ye demonstrate that, with an increase of the coupling
nization have been demonstrated in a system of two couplegyength, one generally observes phase synchronization and
nonidentical Resler chaotic systeni5] which are phase co-  ¢omplete synchronization regimes. In the system, transition
herent. o _ o etween different regimes is blurred due to the stochastic

Synchronization has also been studied in nmse—mduceﬁalture of the dynamics. A synchronization regirain syn-

motions. It was.fou.nd that the stochastic processes "Whronization is found prior to the phase synchronization re-
coupled stochastic bistable systems become coherent when

the coupling strength exceeds some critical valéi The gion, in which the two systems exhibit phase synchronization

mean switching frequency in stochastic bistable systems ca(i’1f spike trgms, while the number of pulsgs n th? spike tralns
be locked by an external period for§@]. Stochastic reso- may be different for the two coupled noisy oscillators. This
nance can be understood from the view point of enhancefBehavior occurs when the trajectories cross the stable mani-
frequency locking and phase synchronization of the noisefold of the saddle before coming back to the node, and is
induced motion to the external sign@]. Due to this syn- thus universal in excitable systems close to the Andronov
chronization, coupled stochastic bistable elements can digifurcation. The mechanism of the transitions in this type of
play global synchronization to an external periodic signal,
which has the effect of enhancing the stochastic resonance in

. . . 0.3
the array[9]. Pure noise can induce coherence resonance in »
some excitable systenigd0—14. Phase synchronization has @ 02
been demonstrated in systems of two coupled coherence 0.1
resonance oscillatorgl3]. Global synchronizatiorj14,15 o ‘
and array-enhanced coherence reson@b8ghave been ob- 0 0.5 1 1.5 2

served in extended excitable media. Recently, synchroniza- b
tion of noisy oscillatory models found an interesting appli-

cation in the oscillatory 29”'”9 of mlneraﬂﬂif_i]. . . and lll, a node, a saddle and an unstable focus coexist. In region IV,

_ However, whether different synchronization regimeSyne node and the saddle disappear via a saddle-node bifurcation. In
similar to those in coupled phase-coherent chaotic systeMggions | and Ill, there are two stable attractors, the node and a limit
also exist in coupled stochastic systems are not clear. Hergcle. The limit cycle disappears via the Andronov homoclinic bi-
we study this problem in a system of two coupled noisysyrcation (dashed lines and the node becomes the global attractor
excitable systems close in parameter space to an Andronqy region Il where the system behaves as an excitable one. Close to
homoclinic bifurcation[17]. This bifurcation is a quite gen- the homoclinic bifurcation point, the stable and unstable manifolds
eral mechanism for excitability observed in many lgge8]  (solid line and dotted line in the phase portraité the saddle are
and biological[11] systems. Typically, three equilibria—a close to each other.

FIG. 1. Bifurcation diagram and phase portraits. In regions I, Il
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FIG. 2. An example of train synchronization fgr=0.16. (a)
and(b) are spikes of the two systems, afmiis the synchronization
error 6x=|X;—X,|. (d) is the phase difference between the spikes.

FIG. 3. An example of phase synchronization fpr 0.34. The
caption is the same as in Fig. 2.

L . display synchronization in a “train” fashion, while the num-
system is different from that in coupled phase-coherent chasgrg of spikes within the synchronized spike trains can be
otic systems. different for the two subsystems, as seen by the phase slips

(defined below in Fig. 2(d). The spiking frequencies are
Il. SYSTEM AND RESULTS different in the two subsystems, and the synchronization er-
2yl sty i roniner yrarics o sy 0 S T e gt Sking o ofhe .
paradigmatic models whose solutions possess desired fea- h hronizati ' , h Yy h o f
tures. We study synchronization phenomena in a simpld€ Phase synchronization regime where the spike frequen-

model with the above desired phase space structure. It read¥s becqme |d¢nt|cal; however, the errors betvyeen phase
synchronized spikes of the two subsystems are still relatively

X1 =Y1+ g(Xp—Xg) + \/;51 (1) large, as seen in Fig. 3, because there are appreciable phase
’ differences between the spikes, although there are no phase

Lo 3 2 slips (| 6¢|<2m). Finally, for large enouglg, the phase dif-
Y1=Xmyihxayim Xt bxitay, @ fefen((leéﬂbetwe)en the >t/Wo subgystemsglgecomg rather small,
: and the differencéx; — x,| reaches the noise level, achieving
Xa=Yz+g(X—Xp) + ok, (3 complete synchronization, as illustrated in Fig. 4. One also
: 3 5 notes that the average number of pulses in the spike trains

Y2=X2— Y2+ XoYo— X+ bXs+a,. (4)  decreases with increasing coupling strength.

L . , To characterize synchronization transitions &rm&ih syn-
This simple mathematical model, although not derived fromyonizationin the system, we first define a train of spikes

a specific physical process, gives a good account of the irsy yhreshold testing: let, be the time at which the system
terspike time distributions of low-frequency fluctuations in aproduces theth spike determined in numerical simulations

'a?sef systerp19], which suggests th"’?t the underlying meCha'when the variablex crosses ovexg from below.xg is thex
nism of the low-frequency fluctuation are excitability and value of the unstable focus. Two successive spikes are
noise. I . considered to be in the same train if the spike intemyal;

Ir_l our_mvestlgatlon, the t_wq osmllator_s are assumed to be_ n<Tu . Top is a prescribed value for the threshold testing.
nonidentical, €.9.a;#a,. Similar behaviors, however, aré pe ynical behavior of this system is not sensitive to this

observed for identical systems. The noisgsand &, are . . -
) ) . i . value. In this way, w n rmine the firing momenof
independent Gaussian white ones with a variance 1.0. alue. In this way, we can dete e the g momeinb

Figure 1 depicts the phase diagram in a parameter space

(b,a) for the uncoupled element. In the following, we take @ 8————7— o
a,=0.25, a,=0.23, b=0.4, ando=0.01, in the excitable ol WMMWM
region Il, and study the synchronization behavior with an (o 5 ‘ T : T ‘ T ‘ 3
increase of coupling strengtlhn b=0.4 is close to the ho- x' 1F t

moclinic bifurcation between regions | and Il. -
In the coupled excitable systems, noise-induced spikes in (€L,
one system may excite another system due to coupling. %
Wheng is rather small, this coupling-induced excitation may  (d)
not always occur, and the systems are in desynchronization &
regime. Asg increases to large enough values, a noise- 3t : ‘ : ‘ : ' : .
induced spike can almost always excite the other system. 0 500 10,[00 1500 2000
This excitation may produce a train of spikes in the systems
before they come back to the quiescent states at the nodes. A FIG. 4. An example of complete synchronization fp+0.70.
typical behavior is shown in Fig. 2, where the two systemsThe caption is the same as in Fig. 2.
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FIG. 5. An example of train synchronization fg=0.16 and
T.»n=20. (a) and(b) are spikes X, solid line and spike trainsxC,
dotted ling of the two systems(c) Phase differences of the spikes
(solid line) and the spike trairidotted ling.

theith spike train Moreover, we can transfer the spike trains
into a binary stream®(t). Now we can compute the phase of
the spikes and spike trains as

t—7°
dC(t)=2mi + c—lc
Tit1™ Ti

Tk
o(t)=27k+ ——,
Tk+17 Tk

©)

For the example in Fig. 2, the spikes are sorted into spik
trains by the above threshold testing with,= 20, as indi-
cated by the dotted lines in Figs(ab and 5b). Figure c)
depicts the phase difference$¢=¢,— ¢, between the
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FIG. 6. lllustration of synchronization regimes) Frequencies
of the spikeg(upper plot$ and the spike trainflower plotg in the
two subsystemsb) Frequency differences ar(d) phase diffusion
constants of the spikes and the spike traihstted line$. (d) Syn-

€hronization erroS of the spikedqsolid line), synchronization error

S of the spike traingdotted ling, and relative maximal synchro-
nization errorR of the spikegdashed ling The insets i@ and(d)
are the frequency and the synchronization ei®rof the spike

spikes andé¢°= ¢7— ¢; between the spike trains. It is trains as a function of, at g=0.16, respectively.
clearly seen that phase slips occur between the spikes of the

two subsystems, while the spike trains are in the phase syshows the frequencies of the spik@egper plots and spike

chronization state. Thus we call the behaui@in synchro-
nization

trains(lower plotg of the two systems. In a large rangegf
the spike frequencies are higher than those of the uncoupled

To quantify the phase slips of the spikes and spike trainssystems due to the mutual excitations. The frequency differ-

we calculate the phase diffusion constants
1 1

D=Iim —{(8¢—(5¢))?), D°=Ilim —{(5¢°—(5¢°%))?).
e 2t e 2t

(6)

ences are shown in Fig(l§, and the phase diffusion con-
stants in Fig. €&). It is seen that, proceeding to the transition
to the phase synchronization regime at abget0.3, there
exists a transition to train synchronization at abgs&t0.1. In
the train synchronization regime 6:9<0.3, the frequency

For further characterization of the synchronization behaviordifference of the spike train is very close to zero, while that

we compute the normalized synchronization eBdretween
x; and x,, and S° betweenx] and x5 (with mean values
being dropped|[5],

_ (X1 =%2)?)¢

- [<Xi>t<X§>t]U2,

((X§=x5)%)

OB (X)) M2

C

(@)

of the spikes is notD°® is very close to zero, bub is not;

and S° is quite small, whileS and R are relatively large.
After the transition to the phase synchronization regime, the
two systems keep in step to produce spikes, but there are
appreciable phase differences between the spikes. As a re-
sult, the relative maximal synchronization errBris still
quite large although the normalized synchronization e&or

where (), denotes an average over time. We also computés rather small because large synchronization errors only oc-

the relative maximal synchronization error
_ (max(x,=xg))
[(max(xy))(max(x;))]**

where max() is the maximum of a variable in a period of
long enough time, and-) denotes an ensemble average.

®)

cur sparsely during the spiking periggig. 3(c)]. A further
increase ofy will reduce the phase differences, and the sys-
tem moves into complete synchronization regifaboutg
>0.6) where the synchronization errors mainly result from
the independent noises in the two subsystems. Since the sys-
tems are in a noisy environment, the transitions between dif-
ferent synchronization regimes are not sharp. The behavior

measures the ratio of the maximal synchronization error t@f the spike train described in the above is not sensitive to

the maximal value of the spikes in the subsystems.
These quantities as functions gfwith the above system
parameters and,,=20 are shown in Fig. 6. Figure(®

the choice of the thresholt,, as long as it is large enough,
as shown by the insets in Figgaband &d), illustrating the
saturation property of the frequencies and the synchroniza-
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presence of a saddle point, the flow closer to the saddle is
slower. After a few spikes following large¢slowen or
smaller (quicken loops cycling the focud=, the two sub-
systems adjust their phase difference to a small enough value
[mod 27r] so that both of them can follow the guidance of
the unstable manifold to the node, completing a synchro-
nized train of spikes. During the adjustment of the phase
difference, one subsystem may cycle the focus a few more
loops than the other, resulting in phase slips of the spikes
shown in Fig. %c). Since phase lags fluctuate and the noises
may help or resist the early crossing over the stable mani-
fold, the number of spikes in the spike trains fluctuates. The
average number of spikes in one train decreases with increas-
ing g, because the average initial phase lags decrease with an
FIG. 7. Mechanism of train synchronizatiop=0.16.(a) Seg-  increase ofg. This smaller initial phase lags make the sys-
ments of the time series of the two systems, illustrating phase lageems more likely to follow the guidance of the unstable
of the spikes(b) Phase space illustration of early-triggered spikes.manifold, and come back to the node together without early
The initially lagged noisy trajectorycycles is drawn across the return; this can be seen from Figs. 2—4. Also, small enough
stab!e manifoldsolid line), and cycles the unstable chEsbefore initial phase lags make the two subsystems follow each other
coming back to the nod&l along the unstable manifol(Hotted closely enough to produce the same number of spikes in the
line). train, and the system moves into the phase synchronization
regime. In the complete synchronization regime, a train of

We also note that the spike frequency in the Completespikes occurs when noise kicks one system across the stable

synchronization region approaches a value smaller than tH@anifOld at some ppint before rea_ching the node, and the
values in uncoupled subsystems. Taking into account th@her follows immediately aimost without phase lag. Due to
small differences betweend{,y;) and (X,,y5), and denot- the wegker level (_)f the effective noise in E48)—(10), an

ing (X,Y)=[(Xy+%,)/2,(y1+Y»)/2] and A=(a;+a,)/2, early-triggered spike rarely occurs.

from Eqs.(1)—(4) one obtains the approximation for the av- Similar synchronization transitions and train synchroniza-
erage dynamicsX,Y): tion have been observed for other parameters in the excitable

region Il. Generally, the distance between the stable and un-

tion error S¢ of the spike trains as functions af,, .

X=Y+Jol2¢, (9) stable manifolds increases as the system parameters move
away from the Andronov bifurcation, and a single spike
Y=X—Y+XY=X3+bX2+A. (10) without early return prevails over spike trains with more than
one spike.

In this approximation, high orders of the differences ( Synchronization transitions in coupled excitable system
—X,yi—Y)(i=1,2) are ignored. The summation of the two differ in mechanism from those in coupled periodic or phase-
independent noise/a| (¢;+ £,)/2] results in another noise coherent chaotic oscillatof&]. In the latter systems, phase
Jal2& which has half of the variance. Now it is seen that synchronization can be described in the weak-coupling limit
the two synchronized subsystems act as a single element bloy a phase modef¢= dw + 29 sin(6¢) + oF, wheredw, the
are subjected to a weaker noise, so that they have a smalldifference of the natural frequencies, adH, the effect of
spiking frequency. A similar behavior was observed in otherthe amplitude difference, both vanish when the systems ap-
excitable system§l5]. This property in the complete syn- proach identity, and the critical value af for the phase
chronization region is different from coupled chaotic sys-synchronization approaches zefrnold tongue [4]. Lag
tems, where the dynamics of the two synchronized systemsynchronizations where the states of two oscillators are
is restricted to the chaotic attractor in the subspace of aearly identical but one system lags in time behind the other,
single uncoupled system. exists between phase synchronization and complete synchro-
The mechanism of the behavior of train synchronizationnization regimes in some chaotic systems with coherent
lies in the crossing of the noisy trajectories over the stablgphases and well-defined frequencjé$. For coupled excit-
manifold of the saddle before reaching the node. Whén  able systems, phase synchronization can occur only after the
large enough, a noise-induced spike in one system exciteoupling is strong enough to induce mutual excitation due to
the other, but the latter has a pronounced phasgfig  the threshold property of the excitable system, even though
7(a)]. Close to the Andronov bifurcation, the stable and un-the two subsystems are identical. For this reason, the typical
stable manifolds are close to each other, a property universélehavior does not depend on whether the systems are iden-
in this type of system. The lagged system is very likely to betical or nonidentical. Due to the noisy environment, the
drawn across the stable manifold, resulting in an earlyphase lags between the spikes of the two subsystems fluctu-
triggered spike before reaching the nddiég. 7(b)]. More-  ate, and one subsystem can advance or lag behind the other
over, both systems may cross the stable manifold for severdbr different spikes. There does not exist a well-defined time
times, producing a train of early-triggered spikes. Due to thdag between the systems, and thus there is not a pronounced
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lag synchronization regime. Also, transitions between differthe intrinsic dynamics of the guidance of the unstable mani-
ent regimes are blurred due to the stochastic nature of thield. For weak noise, the time scale for the escape from the
system. quiescent state is long, while it is much shorter for the pulse
itself. Some other mechanism can produce a similar separa-
IIl. DISCUSSION tion of times scales. For example, in a chaotic bursting
. model [21] of thermally sensitive neurons, there are slow
In summary, we have demonstrated a series of synchronipthreshold oscillations with time scales much longer than
zation tran§itions_ ina system of two coupled noisy excitablgnhgse of the spike generation. The system can produce spike
systems displaying excitability close to the Andronov ho-yrains with chaotic pulse intervals in some temperature re-
moclinic bifurcation. Synchronization in coupled excitable gion. When two nonidentical chaotic neurons in such a re-
systems only occurs when the coupling is large enough t§ime are coupled, a similar transition from train synchroni-
induce mutual excitation. The initial phase lag between the ation to full synchronization is observed. In this model, in a
excited and exciting spikes plays a crucial role in the systemertain temperature region, there is a saddle embedded in the
behavior. With the phase lags decreasing for larger couplingnaotic attractor, and a homoclinic bifurcation has been iden-
strengths, the system undergoes transitions frpm weaker igied [22] implicitly by the sudden explosion of the spike
stronger synchronization regimes. Based on this understanthteryal. Train synchronization is also observed in the vicin-
ing of synchronization behavior in excitable systems, transiity of this bifurcation point. However, in this four-
tions from desynchronization to phase synchronization angjjmensional system, we have no knowledge of the organiza-
then to complete synchronization can be generally observeghn of the stable and unstable manifolds, which could be
in systems of two coupled excitable elements, while trainery complicated[23]. Furthermore, the system trajectory
synchronization can be observed in systems close to the Ajisits the close neighborhood of the saddle rarely and in an
dronov homoclinic bifurcation where stable and unstableptermittent way, which is different from excitable systems,
manifolds of the saddle are close. The mechanism of synynere the trajectory always comes back to a stable node
chronization in this type of system is different from that in ¢|ose to the saddle after a spike train. Thus we cannot simply
coupled phase-coherent chaotic systems. . _ ascribe the train synchronization in this system to the close-
The existence of a saddle in the system has interestingess of the stable and unstable manifolds of the saddle. In the
effects on its behavior. Prior to the Andronov bifurcation, thefytyre it would be worthwhile to investigate synchronization

saddle has the effect of dephasing in two coupled neurongnder more general considerations of separated time scales in
with periodic oscillatior{20]. Just after bifurcation, trains of he systems.

spikes resulting from a noise-induced crossing over a stable The mechanisms for the generation of pulse trains in cha-
manifold before reaching the node account for the clusters Qjtic and excitable models of neurons are different. Similar
dropout events observed in laser syst¢h®, and the “rigid  properties of the synchronization transition and train syn-
excitation™ in the Hodgkin-Huxley neuron in the presence of chronization in these classes of systems may be of impor-
noise [11]. Here in coupled systems, trains of spikes alsoiance for neurophysiology, e.g., in biological information
occur when coupling induces a similar early crossing ovepyrocessing. The impact of train synchronization on the be-

the stable manifold. We should also point out that train syntayior of networks of coupled excitable or chaotic neurons
chronization can also be observed in regions outside the exgj|| pe an interesting topic for future investigation.

citable region Il if the system is close to the border of ho-
moclinic bifurcation and isn the presence of noisé his
could be understood by the fact that the noise smears out the
sharp transitions. C.S.Z. would like to thank Professor U. Feudel for helpful

In excitable systems, there are separated time scales. Odécussion on the chaotic bursting model of thermally sensi-
is determined by noise-induced escape from the well over théve neurons. This work was supported in part by grants from
barrier of the potential, such ad(x)=x*4—bx3/3—x3/2  the Hong Kong Research Grants Coun@®GC) and the
—ax, defined in a neighborhood of the notle[19] in the  Hong Kong Baptist University Faculty Research Grant
system of equation&l)—(4), and the other is determined by (FRG).
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